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In the solution of many applied problems of the mechanics of a continuous
medium, reducing to systems of partial differential equations, the methods
of integral relations have found & wlde application. These methods make it
possible, in an approximate solution of the problems, to decrease the number
of independent variables ln the differential equations and even to reduce
these equations to algebraic ones.

Great popularity has been achleved in the course of fifty years by the
method of B.G.Gelerkin. As is well known, in Galerkin's method the form of
the solution 1s chosen a priori, whilst the integral relations, turning into
algebralc equations, serve to determine the constants appearing in the solu-
tion. Kantorovich fl] proposed in problems with two variables to seek a
solution in a form containing undetermined functions of one variadble, and to
determine these functions from the ordinary differential equations obtained
from the integral relations. In an important particular problem of fluid
mechanics — the theory of the boundary layer — such an approach had been
employed earlier in the method of integral relations by von Kérmén [2].

In a number of problems the method of integral relations enables one to
obtain good results with a very small number of approximationa and even in
the first approximation. For this a considerable importance attaches to the
a priorl choice of the particular stipulated solution, based on the use of
supplementary information on the form of the required solution (as examples
we may clte the Kochin-Loitslanskil method in boundary layer theory [2] or
the method used by the author in the calculation of one-dimensionsal unsteady
gas flows with strong shock waves [3]). The application of high speed com-
puters makes 1t possible to effectively find sufficiently high approximations
in the method of integral relations and at the same time makes it possible
to relax the requirementa in the a priori choice of the specified part of
the solution and the form of the original equations. However, the use of
high approximations complicates the qualitative analysis of the solution of
the approximating aystem of equations and the interpretation of the results
obtained. In the present paper the method of integral relations is applied
to three-dimensional gas flows with shock waves. We make a qualitative ana-
lysis of the system of equations of the approximation of zero order, and
these equations are interpreted as the equations of two~dimensional motion
of gas on a streamline surface,

Let us turn first to the basic ldea of the method of integral relations.
Let us consider a system of »n first order partial differentisl equations
relating to the functions u,,... u, of the three independent variables Xy »
Xas 2

Li(w)=0 (i=1,2...,n)

Suppose that 1t 1s required to find the solution of this system in the
region D, and we shall assume for definiteness that the region p 18
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bounded by the surface y(x,,x,) = O and the surfaces ; = 2, (g, i)
z = z, (71, 7).

We shall assume that the boundary conditions have the form y, (u,x, ,x,) = O
on the surfaces z=z and z =z , and YP*(u, x, 24, z) = ( on the surface

x =0 (depending on thé nature of *the problém the latter conditions can also
be different).

Suppose that we have succeeded in finding the aystem of functions
o, (¥, »X;,2) possessing the property that any function ulx, »x,2) , continu-
ous in the region p , can be approximated by a ceriain linear combination
of the functions of this system.

We shall expand the approximate solution of the problem in the form
N
“k(N) — E uk(’;lv) (1, T2) @, (1, 22, %)
m.-=0

To determine the coefficients ukgy’ involves taking the required number
of integral relations (the conditions of orthogonality of the expression
L; (u'N)) with the functions V)

4

S Ly (™) Py (21, 72, 2)dz = 0 m=0,1,...)

zLD
where y,{(x, ,x3,2) 18 a system of functions, complete in the region D (in
particular, the systems of functions ¢, and y, can be coincident), and
also the boundary conditions ¥y (u(N), z;, x,)=0, giving closed relations
between the functions u,(N). The integral relations turn into first order
partial differential equations for the functions uk"JN> in two independent
variables. The solution of these equations is expanded on the region of the
(x,,x,) plane bounded by the curve x(x sX3) = 0 , If the boundary condi-
tions on the boundary of the region had the form V" (&, @;, 3 2) = 0, then we
should find the required conditions for the two-dimensional problem from the
relations 2

K ( (u(m, x1, ¥, 2) P, {71, Te, 3)dz =0

Zw
The formulation of the problem 1s generalized without difficulty to the
case when, for example, the surface gz = :,(x,,x,) 18 not given but deter-
mines 1tself. Then the conditions on the surface 2z = 2, take the form

¥ (4, @y, 73, 2, 0z 0xy, 0z, [ Bzy) == 0

and the number of them increases by one.

For the choice of the functions ¢, and ¢, the following general method
can be recommended. Let n,(z) be a system of linearly independent functions,
complete on the segment [a, »].

Then the system of functions n,({) , where
. b—a)ztasg—Dbsy
5= . —

g tw

is complete on the segment Ez s 2,1+ Therefore in the region 2 we can use
the system of functions n, C’ for o, and 4§, .

A distinctive cholce of the orthogonal functions y, was proposed by
Dorodnitsyn [4]. The functions ¢, start off being dependent on the chosen
approximation and are determined from Formulas

1 tor 0L (m+ 1)/N .
wm(N’={o for (m41)/ N[ <1 (m=0,1,...,N—1)

For the functions ¢, used for the approximatilon to the solution, we take
the power functions {=*.. Using the cholce of the functions ¢, and ¥, ,
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Belotserkovskil gave an effective numerical solution of a number of problems
of two-dimensional flow past bodles with shock waves present [5].

1. The genoral equations. Let us apply the above general considerations
to the problem of supersonlc streamline flow of an ideal gas past a body.
For simpliclity we shall assume that the portlion of the surface of the body
under consideration is plane (in particular, 1t can be assumed that the case
in question concerns the flow past a plane wing at an angle of attack). To
describe the motion of the gas let us introduce Carteslan coordinates, choos=-
ing the axes of x and y to lle in the plane of the body surface, whilst
the g-axis is directed along the normal to it.

The equations of motion of the gas in the layer between the surface of
the wing and the shock wave will be taken in the form

8pu +6pv +8pw —0, i(pu2+p) 6puz7 +6puw .
i)
T gy o0t p) + B o, fpy e 797(0w2+P): 0 (1.1)
dous opr§ Bpr apuL apvl dpwi*
o +6y+6z =0, + + Jz =0

Here uy, v, y &are the velocity components along the axes; p , p, § ,1*
are the density, pressure, entropy and total enthalpy of unit mass of the
gas, respectively. For a perfect gas with constant specific heats

s=P e _wdeidet | v p
P 2 r—1p
The last equation of the system (1.1), expressing the conservation of
total enthalpy in a particle of the gas, 1s not independent — it is obtained

as a result of the remaining equations of the system,

The system of equations (1.1) can be rewritten in the general form

94;; |, 9B;
o+ G =0 (1.2)

Here
r =2, Ty = y

Ap=opu, Ap=pv, By=pw, Ay =pu®+p, Ay =puv, B;=puw,
Ay = pvu, Asa=pv?®+ p, By =pow, Ay =pwu, Ay =pwv, By =pu? + p
A51 = puS’ A52 = va; B5 = PWS, A61 = pul*: A62 = Dvi*, Bs = pZUi*

Let h = h(x,y) be the thickness of the layer of gas between the surface

of the wing and the shock wave . On the shock wave, i.e. when z = h(x,y),
there must be fulfilment of the conditions of conservation of mass, momentum

(in projection on the three axes) and of total enthalpy. These conditions
in the notation introduced above can be written down in the following form:

oh o oo Oh .
(Bi-—— Aij E)z:thi — Aij E (i=1,2,3,46) (13)

The superscript o here denotes values in the free stream.

When ¢ = 5 , i.e. for entropy, the conservation law does not hold at
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the shock wave, as 1s well known. The value of the entropy behind the shock
wave 5,18 expressed with the help of the equations of conservation (1.3) in
terms of the parameters of the free stream and an/ax,. For a perfect gas
with constant specific heats

:_1__[ 2 (Bi— 4yjoh/dz  y—1__ Jur
(r+1)p® 1+<ah/ax,~)<ah/axj) r1 ] a8
|:’]'——1+ oooo1+(6h/azj)(ah/axj)—l

H—i

T4+1 (Bl—Aljah/axj)" J (14)
Making use of thls expression, we can write for {1 = 5 also
oh o Oh
(Bs— 44 aT,L = By — 4y 5, - (1.5)

Here we have introduced the conventional notution B3~ = B,;%S,,

A539° - Al?oSh.

We shall introduce, 1n accordance with the usual theory, instead of the
coordinate z the varlable ( according to Formula

{=2z/h—1
The variable ( ranges from —1 to + 1, and { = — 1 corresponds to
the plane of the wing, whllst ( = + 1 corresponds to the shock wave surface.
For the functions ¢, we take the Legendre polynomials p,{() , forming a
complete system of orthogonal functions in the interval [— 1, + 1], and we
shall approximate the required functions, for example the function u , by
expreésions of the form

N
2 P (C) um™

m=0
which we shall call the ¥th approximation for these functions.

For the orthogonalizing functions y, we shall likewlse take the Legendre
polynomials p,(¢) . Let us multiply term by term the equations of system
(1.2) by the Legendre polynomial of the mth order P,({) and integrate them
with respect to  from O to »n

\P (©) 5 d +§
0
Carrying out a simple transrormation and making use of the properties of
Legendre polynomials, we obtain
for m==0

z=0

1
d h ( 5 oh . _
a7 | Audlt (Bi— Az, —(Bio =0
—1
for m:1,2,3,...

1 1 m

o h ( 15”&_"’ 2m — 2k + 1) Py | Aijdl —

ETSPmAng-{— 2 8z; Xltmpm“i‘kgl(m 2k +1) "] e
—1 —_

(to be continued)
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1 n
— B 3 @m— 3k 4 3) Prosen 00 + (Bi— Auy) _, — (Bimo = 0

k—1 z=h

m

(n ______';L’ s 1 respectively for m even or odd)

Using the conditions (1.3) and (1.5) on the shock wave and the condition
w(x,, X3, ©) = O on the streamlined surface, we can rewrlte thils system of
integral relations in the following form ({ = 1, ..., 6) :

1
é h oo o 8k _ _
5;]_7_&1 Ayl + B — A 5o — (B =0 (m=0) -
1 1
a h 1 ok -
iy \ (P Pr) dudt + 55 Slm(Pm+Pm.1) Ayidg—
- 1 m—1
— (B S (™ @+ ) Pedg =0 (m=1,2,3..)
—1 k=0

Here (Byz—o = Pw:, whilst the remaining (Bi);—p = 0.

Let us use the integral relations Just written down, the boundary condi-
tions (1.3) and (1.5) at the shock wave and the boundary condition p = O
at the streamlined surface, to determine the coefficients u, ‘N, v, ,...
in ¥th epproximations of the required functions.

Moreover for the initial five independent equations of system (1.1) let
us take the equation of continuity, the projections of the momentum equatlon
on the axes of y and y , the equation of conservation of entropy and the
equation of conservation of total entalphy in the integrated form. For a
perfect gas with constant specific heats the last equation (Bernoulll's
integral) has the form

u2+v‘3+wﬁ+ Y P Zio’__l__'r_i:i*oo .

2 r—1p 2 T—1 p®

In obtaining this integral we have already used the condition at the shock
wave (1.3) with { = 6 .

Accordingly, with V > 1, for the determination of the 5 (N -+ 1)coeffi-
clents of the Nth approximations to the quantities u(M), ) w(MN) p(N) ()
and the function » , the system of relations contains the 4y first air-
ferentlal equations of the system (1.6) (with ¢ = 1, 2, 3, 5 and m=0, 1,
wees N =1), and the ¥ final relations

1
3 2 2 .
S P, [p (u +u2+w .__1*00) _|_F__T__1p]d§ =0 (m=0,1,...,N—1), (1.7)
—1
the four relations at the shock wave

N N) Oh oo Ok _ .
Bl( )-‘Aij( )a_:c;:BiOO__Aij Ex_:’ tor =1, i=1,2,3,5
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and one relation at the surface of the body

N
W™ =w!™M—w ™ ()Y =0 e p=—1 (1.8)

With ¥ = 0, 1i.e. in the zeroth approximation, the system of relations
for determining the five quantities u(®, (@ @ p@ o) ang 4 consist
of the first four differentlal equations (1.6) with 4 = 1, 2, 3, 5, the
first relation (1.7) and condition (1.8).

This system of equations of the zeroth approximation has the following
form (the indices for the required quantities are dropped):

dpuh dpvh ol 7 0h oh
v+ 5 4V, = 0 (V =W —vd—v )

) ) 8
ph(u-gg-+va—;)+ax<p~pw>h+pwV( u) =0

ph(u2—§+v—§—,j—)+§(p—pm>h+pwvv(v%v)=0 (1.9)

ph( a +2° )+p°°V(Snﬂ?)—0

M+_L£=!i‘i P

2 T—1p 2 T—1 p™
Here 5, 1s determined by Formula (1.4).

The equation of continuity and the projections of the equation of motion
on the y and y axes can also be given the following alternative form:

ph du dv ]

F[(cﬁ—-—tﬁ)%—uv(%—]—ﬁ)—{—(az—»vg) —@J-}—
tolegr o) ¢ L (r 1) =0

3 o | 9Ins
— 5) F (p—p°) g + 07V (U —u)— g ph "5 = 0

either pvh ( 3y

v 9 . © v dlnS
or  puh{5X —S) 4 (p—p) G+ 0V — o) — Ly phI0E = 0

(P—P°°)<u*g—: -H)g—y)er""Vv [(U—u)u—{—(V—wv)y +
ttl

+Lp T Sh—8)| =0

The solution of system (1.9) can be carried out by methods analogous to
those used 1n the solutlon of problems on ordinary two-dimensional gas flows
(it 1s only necessary to assume that the equation of entropy is essentially
nonlinear). In particular, for supersonic velocities we can use the method
of characteristics for the solution of system (1.9).

7—~1

The system (1.9) has the following families of characteristics:
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ur4a Vur+ ot —a? , v CDhy
1,2 = v Ya =, e = —7—
yn, u® — a? u o,
X

(the characteristics of the third family are double).
Along the charaecteristics the following relations obtaln:

y a Yu £ =4t
v+ " W=y '+

aty’ / PV, 1S, =5

v

to—a \puhs + pvhy + —
phuS’ -+ pV (S, —S) =0

1y , Ou + v ; Op , 0S8
(th hy =—0 )] — O — (])s 7&;

oy T TV oy ¢ oy
Here
v-1
® = (p— p) (whe + ) + 0V, [(U —w)u+ (V —0) v+ Ty p ™ ($1—)]
v ou - . v, 9IS

Q== = —om [(p~p Y u A+ 02V (V —v) — -7 ph 5 ]

The quantities 0u/61 , dv /_By, Op/ay, 0S/62/ are easily expressed in
terms of the corresponding values of u', v', p° and S’, for example

oh (v — uy’)% = — phusS — o=V, (Sp — )

The first three families of characterlstics are the usual acoustic char-
acteristics and streamlines of two-dimensional problems of gas dynamics.
The fourth family 1s a new one, having no analog in the ordinary two-dimen-
sional problems of gas dynamics.

To solve the system thus obtained we need to formulate the boundary con-
ditions on the boundary of the region in the xy-plane. In what follows we
shall restrict ourselves to the case of flow past a plane wing with sharp
edges. Then the boundary of the flow region under consideration 1s the
edge of the wing,

It is evident that on the part of the contour where the shock wave is

attached to the edge of the wing, n = 0 , whilst the values of the remaining
required functions are determined from the relations on the wave,

The boundary conditions on the remaining part of the contour in the gene-
ral case cannot be specifled in advance, so that the flow on the pressure

side of the wing and the flow on 1its suction side have to be calculated
together.

Let us suppose ideally that with fixed conditions in the free stream the
pressure on the suction side of the wing is reduced. The influence of this
decrease of pressure will be transmitted to the pressure side of the wing
along that part of the edge where the shock wave 1s detached and the velo-
city component of the gas normal to the edge i1s less than the sound veloclty.
As the pressure 1s lowered this component will grow until it reaches the
sound velocity; after that the influence of a fall in the pressure on the
flow on the pressure side of the wing will cease.

Accordingly, for a sufficiently large velocity of the free stream and
large angles of attack, when the ratio of the pressures on the pressure and
suction sides of the wing is sufficlently large, we must take v, > for
the boundary condition at the boundary of the region (i.e. at the edge of
the wing), where nh # O .
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2. The linearized equations and their solution. Suppose that the leading
edge of the wing has a straight line segment, and mpreover that on this sec~
tion the shock wave is attached to the edge and that the flow behind 1t is
supersonic, Then in the reglion of influence of the straight segment of the
edge the system of Equations (1.9) gives an exact solution, corresponding to
a translational flow of gas. If the segment of the edge differs only slight=-
ly from a straight line, then to find the flow in the region of influence,
and also in a certain neighborhood outside 1t, we can make use of the line-
arized equations.

Let us assume that the difference in the stream behind the shock from a
translational stream 1s characterlzed by the small parameter ¢ . For exam-
ple, let us assume that the equation of the leading edge of the wing at the
segment under consideration has the form x = x*(y), where x*(y) = ex, (¥),
and x is a quantity of the order of unity. Let us write the solution of
the system (1.9) in the form of serles in ¢

U=Uugt+8euy+..., v=004+8€01+ ..., p=po+eEpi+ ..., N
(2.1)
p=po+8p1+..., S=So+851+..., h=k(x——x*)+8h1+.

and let us restrict ourselves in what follows to the determination only of
the terms written down in these series. Let us substitute Expressions (2.1)
and also Expression §,m S,o+ €S5,;+ ... in Equation (1.9). Bearing in mind
that in the case under consideration the quantities with the subscript O
and the quantity % are constants, we obtaln for the determination of these
quantities the following system of relations (the relations at the shock):

pouok + poo (W ——Uk) = 0, DPo— poo__ Pollo (U —_— uO) = 0, Vo = v (2.2)
ug? + v® Y P V! T P”

— P . g — — il —
Po—pm— W WIW—Uk) =10, T—1 po 2 T—1p®

Here instead of the equation S,,= S,, obtained by using the momentum
equation projected on the normal to the wing, we have written down this
equation itself. The system for the determination of the following terms
of the series (2.1) has the form

:_a: [Pok (x — x*) uy + upk (x — 2*) ;] + 'a%‘ [Pok (x—2) 1 4 vok (x—3*)p, ] +
-+ (Potio — p°U) %}:—:— + (Povo — p>V) (%éyl— — 331') =0

% [2pot20k (x — x*) uy + uo?k (x — 2*) py + K (x — 2*) p1] + (2.3)

+ _6% [Potzok (. — x*) vy + Povok (X — x*) uy + uevok (x — z*) py] +

oh ah ,
+ U (potto — p=U) a—; + (Potovo — p*UV) (’{;yi — kx, ) =0

(to be continued)
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% [Pottok (€ — x*) vy + Povok (x — 2*) 1y + uvok (x—z*)py ]+
+§_ [20000k (x — 2*) v1 + 0ok (£ — %) o1 + k(2 —2*%) p1] +
+ (pouo — p=U) V 2

9 ,
+ (pov0® 4 po — p° — p>=V?) ( o kxl) =0

a—xuo(x—x*)Sl—|—[a—yvo(x——x*)S1——u0Shl=0

u0u1+vov1+1%l(ﬂ — 5’?‘91>=0

Po
Si_1m_m —0 O
S T P P’ S"‘_max—*"n( kz )
__ 2W—Uk)(U -+ Wk) W —URV o,
m= A+ w2y S’y n=- ——1——9?“_‘?

Here S denotes the derivative of S, with respect to v? when

e=0,
i.e.

,_200—1) (41— /o2 (v2= (W — U 0h [0z —V 0k [ dy)* \
IRTEI S m T A (Oh/oaP+ BR[Oy |
By the substitution
k(z—az*)u, =U,, k(x—az*) p1=P,, k(zx—z*)S, =0,
k(z—z¥)v, =V, k(z—ax*)p, = R, hy—kz, = H,

the system of linear equations (2.3) is reduced to a system of linear equa-
tions with constant coefficients

(2.4)

/]
-‘% (P + uoR,) + 50 (PoV o+ 2o RR,) +
+ (Poo
a
-367 (Poutol  + P.) + - povol  +

=0

+ (U — 1) (Pouo—pwU)%—p“V (U — uy) 9, _ ¢

9 3
%‘Porox + W (povon ~+ Px) + potto (U _ uo) 66H>< =0

a 9 oH,, oH
F u00x+ —é; VoS, — uok (m 9% n ayx ) =0

uol,, +voV+T_1(f£—ppgR) 0, Sx_ 1P _ &R

This system has four real characterlstic directions, determined by the

relations dy/dx = g, . Corresponding to this direction the solutions have
the form
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B, = ugvo 4 ao V ag¥ — (ug® + vo%) B, — %% 4 Vgl — (u2 + v02) By— o
1= u? — go? Ha == —3 37 4
0 0 ug? agp' 0

Ua=—BV0, V=V O(y—pr), Ug=—BV,0,V 3=V @y —Byur)

Py = p, (Biug — Vo) Vx“), Ox1 = 0, P = Po (Baun

rp) V. @, 600

Ra =2 Bua—vo) V.00, Ha =0,  Ra= L (bug—vq) V1, H,y=0

— Uoap? . - po _
Us = (v —1) So (uor - vo2)6x’ Py=0R4=— S5, O«
;o vog? B B
Vi = = Ty s ey 00 G = 0 —Be), Moy =0

When 3, = (1 + A%) Uo/uo#Ba‘ (1.e. when V =£0)

U= (U—u,—pC)H, R, = p° (Bytrg — v0) C— 1o (U — uo)j H,
, U— — kugrq

! x4 T ( ag? (LTLSBI;;‘;— /clz,ugz ) H = (’}] Oua = 0

Px‘l: po[(B‘lu'O— U()) C—— 2 (U——Llo)] ijx’ [1x4 = Hx (y — 841')

If V= 0, then B = g,= O , and the functions corresponding to this com~
mon characteristic direction have the form

2 o)
o= (] — % - _ Po—Pp Po
[/x—(L II())ff>< (1) woso T ffx_———‘a(J2 H*_'_\STGX

Vx:()’ [)x::'_—(]}()—_poo)lid G<:Gx(y)’ IIX:HX(y)

The solution obtained shows that, as in ordinary problems of plane super-
sonic gas flows, only perturbations of entropy, density and longitudinal
veloclty are transmitted along the streamlines of the unperturbed motion
(1t is easily seen that in the system of coordinates in which Vo= 0 the
equation V4= O holds)., Perturbations of pressure, density and the compo-
nent of velocity perpendicular to the characteristic are transmitted along
the acoustic characteristics. The characteristics of the fourth family are
lines of transmission of perturbations in the form of the shock wave (the
thickness of the layer of compressed gas); perturbations of enropy are not
transmitted along these characteristics.

A strailghtforward geometrical consideration shows that the fourth charac-~
teristic direction 1s the direction of the projection on the plane of the
wing of the velocity component of the free stream tangential to the shock
wave. More obvious is another interpretation of this direction. In the
flow behind the shock wave let us consider the Mach cone issuing from a point
of the edge of the wing. This cone intersects the plane of the shock along
two stralght lines. We can show that the fourth characteristlc direction 1s
the bisector of the angle between those 1l1lines which are the projectlons of
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these two lines on the plane of the wing. Certainly, according to the physi-
cal meaning established above c¢f the characterlstics of the fourth famlly,

as lines of propagation of perturbations in the form of the wave, it would
be more satisfactory if each of these straight lines separately were a char-
acteristic. However, in the zeroth approximation we do not succeed in
obtaining this result,

The four arbitrary functions V. (y —B,z), Vi@ (y — B,2),
ox (y — Bsx), Hx (y — Bsz), appearing in the general solution, are easily
determined in the region of influence by means of the equation of the leading
edge x1(y).

Indeed, in accordance with the definition (2.4), the functions Uy, Vy,
Pxs Ry, 0x must vanish when x = x* (the quantities wu;, vy, P15 p1s
remain bounded when approaching the edge of the wing), whilst the function
Hy 1is determined from the relation

H, (y—Baz*) = — k1 (y) (2.5)

Representing each of the functions U , V., P,, R, 6, in the form of a
sum of arbiltrary functions Vx(l), me, g,, H, with corresponding coeffi~-
clents and equating to zero when x = x¥*, we obtain

2
Uy=— Blvx(l) - Bsz(Z) Tr—1 ;:(z‘;oz + 2%) 6+ (U —uo— B4C) Hx =0

—y W (2) voo? _
Vx - Vx + Vx - (71— 1) So (ua® + 2o?) Ox + CHx =0

P = po (Biup — vo) Vx(l) + po (Batto — vo) Vx(z) +
4 Po [(Batto — 0) C — o (U — ug)l H, =0
Ro= 25 Buo— v0) V" + £5 Bauio— 00 V. —

— Bt B ((Butto—v0) € — i (U — uo)] Hy = 0

6,=0

Bearing in mind the last equation, we find that the two previous equations
are consequences of the first two (in the absence of any entropy perturbation
it follows from the vanishing of perturbations in the velocity components
that there are no perturbations in the pressure and density). Prom the first
two equations with o,= O we find that

Vx(l) (y — le*) - Bz —Bs) C+ U —up kay (y)

Br— B2
—B)C +U —u
mel(y —Baz*) = — B éz -'+Bx >k (¥)

In the particular case when ¥V = O , we find that
-1
C=0,B,=—Bs =(M:2—1)"
and hence

VO (y—Bua*) = —V. P (y + Bia*) = Tk (y)  (2.6)
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Let us consider examples.

~ Let the leading edge of the wi conslist of two straight 1
the equations of which are ne en ine segments,

z==0 when y<0, z=¢y wheny >0

i.e. let the function x, (y). 1n Expressions (2.5) and (2.6) b
Foerae v () Xp: (2.5) (2.6) be defined by

r1(y) =0 for y< O, £ (yY)=y for Yy >0
Then k
me(ﬁ):—jg([]——uo)ﬂ-}-ﬁie)g for £>0

k
Vi@ () =35 (U —uo) (1 —Be)n  tor >0
H, (yy=-—ky for y>0
For negative values of the arguments all these functlions are equal to zero.,

Let us find expressions for the pressure and for the velocity components
v , defining in the linear approximation the form of
the streamlines, in the four regions separated from
one another by the characteristics

N=y+Pr=0 y=0 E=y— Pz=0(see Fig.l)

Regions n r1
1 0 0
2 —Ya(po — P) ((y/ 2) 1+ B) } U—uo(y
Fig. 1 3 Yo (po — ) ({y /2) —B) 28 (7 + B)
4 0 U — ug

Inside the angle formed by the characteristics y + px =0 and y — Bx =0
the.pressure 18 reduced , and the greatest reduction of pressure is equal to

po-—p>

—
2V ME—1
The variation of pressure in region 4 ,

in comparison with the pressure in region
1, is of order e® . All the streamlines

for y::O

y vy are inclined to the side of positive y ,

v « asymptotically assuming the direction of
the line y = & (U— uo) / 2ug)z_ (this direc-
tion corresponds to the singular polnt of
Ferri type for conical three-dimensional

flows), bisecting the angle between the
directions of the translational flows in
Fig. 2 regions 1 and &4 .

It is evident that the solution of the
problem for the case when x,= |y| , i.e. for symmetrical flow past a wing,
can be obtained in the linear formulation by a simple superposition of the
solution Jjust found.

For the next example let us consider (Fig.2) a wing for which the leading
edge 1s a straight line perpendicular to the free stream everywhere except
for the segment (— 1, 2). In each of the regions separated from one another
by the characteristics lssuing from the ends of the curved segment of the
edge, the functions determining the perturbation of the stream are shown in
Pig.2. In determining these functions by Formulas (2.5) and (2.6) and using
them in the region of influence of the curved segment of the edge it is
necessary to retain the terms of order ¢ . In Expressions (2.4), defining
the perturbation of the flow by the functions V (), V, @2 and i ; the term
x*= ¢x, must not be neglected in comparison with “x . Accordingly, in the
region of influence of the curved segment of the edge we obtain
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(o — e ()] 11 = g (o [y + B (= — em)] — 1 [y — B (5 — ea)
v1— (Ul —ug) z’ (y) for = — g2y (y)
i.e. v, tends to the required value determined by the relations at the shock.
Similarly,

(g —2*) pr=(po— PP) (@1 (y) — Vo (21 [y — B (o — 2*)] + =1 [y 1 B (z — =*)]}
For small values of x — x*
L= Yz (po— p%) 3=” (y) (v — %)

At very remote points in the region of influence of the curved portion

__p—p® z1(0)
=Y ie—1 |

Let us consider now & wing having the plan form of an isosceles triangle
with the base turned towards the free stream. If the shook is attached to
the leading edge then 8o long &8s the whole of the wing lies in the region

of influence of the leadind edge, the flow on

{ 4 the surface of the wing is translational. 1If
TITTI7777777: we increase the angle of attack (or decrease
the Mach number ¥ of the free stream, or
lengthen the wing, decreasing the angle oppo-
site the leading edge), then between the region
of influence of the leading edge of the wing
and the lateral edges of the wing there are
formed regions of flow with veritable parame-
ters (Fig.3). To make possible the use of the
linear theory we shall suppose that the equa-
tion of one of the edges has the form

y=axwa(p—e)

where tanu=pg, and ¢ is a small quantity.
At the edge of the wing we must have the con-
Fig. 3 dition v, = g , which in the linear approxima-
tion can be reduced to the following form:

2 e
Vx(l)—{—AVX(z):——T—_*_—1 kugr cos?p  for yzz(B——m>
A 2 <3—7_ 2\

TrH1y 2 Mg?

On the line of symmetry of the wing, li.e. y =1 , it follows from the
condition v = 0 that

Vx(l) + VX(2) =0
From these conditions it is easy to find that in region 1
2 kugcostp
T+1 e ’
whi{xsltthe region 2 the quantities V, ‘Y and H_, obviously remain the same,

v,V = V.® =0, H, =0

2 kupcostp
R e e L)

The solution in regions 3, 4 and so on, can also be found without diffi-
culty, but, bearing in mind the slze of these regions, in the linear appro-
ximation 1t is sufficient to limit conslderation of the flow just to regions
1 and 2,

Accordingly, in region 1, where the flow is conical in character,
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2 y 2
v:muoCObA}L(‘;‘—",B), P = po ﬁj-ipouo‘zunu(*os‘lu(-g——{i)
In region 2

4 iy (Y 4 . zB
V=T down oS H(T— ’ P:PU*“mPo’lozsluz]l('()szp’(T“—i)

At the point with the greatest value of x in region 2
4e -
P == po— Y1 Pototsinpcosp

The coefficient of normal foree acting on the wing has the form

0 . for p<99
CN — CNO == R4 pOHO'Z .
o T+1;&7—§;§ sinfocos by (b — G for p >0

Here (,° 1s the value of (, “for the wing of infinite span.

3. Oonical flows. As an example of the use of the nonlinear equations
let us consider conical flows. These flows describe certain behaviors of
flow past triangular, trapezoidal and other wings, the leading edge of which
consists of straight line segments, In conical flows the parameters of the
gas in the layer between the surface of the wing and the shock wave do not
depend on the distance r from the vertex of the wing (taken as the origin
of coordinates), but the thicikness of the layer » 1is proportional to this
distance. Measuring the polar angle 8 from the direction of the vector
veloclty of the free stream on the plane of the wing, denoting by u end »
the radial and circumferential velocities, and setting ~ = rg(p), let us
transform Equation (1.9), taking account of the conical nature of the flow,
into the form

2puH + S pvH + oV, = (3.1)
poH 34— 0 H - (p — p=) H + pV, (Vs — 1) = 0

(p—p=) (aH + v 55) + 0=V, [u(Vr—u) +

+o (Vo) + ;g prVe(Sh— )| =0

ool 35 | oV, (Sp— ) = 0

¥ r

(V =W—V H-V, ?{'éq' W=—V_sina, V.=V, cosacosd, Vg=—V cosasin 8)

The quantity S5, (v,®) is determined by Expression (1.4), where
o, (W—V,H—VyH |dop
Un' = "{Hi (dH /] dO}
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The third equation of system (3.1) determines gdg/de implicitly. The
remaining equations can be solved with respect to the derivatives, as a
result of which we obtain

®(dH /d8, H, u, v, §)=0 (3.2)
du (p—p°°)H+pOO(W——V,.H—ng[]/dﬂ)(V,.——u)
o = v pulf
d 1 i ’ . 00 (o) 2
E% =m[pa2(2ufi+vli ) — puv*H + (p — p®)uH +p V\,{a [ 14+
Sp—S 7
+5 T—1 ]“(Vr“”m
ds peV, (Sp— ) ut 4 2 1/¥ 13

= — y +711SPY—1/Y:1‘*0°7 p:pT) azzT

do pvH 2 P

Let us consider the portion of the edge of the wing characterized by the
angle 6,<4m. Simple geometrical consideration (Fig.%4) shows that 1f the
angle 6, is such that the following condition 1s fulfilled:

sin@ /wn ot > cot @ (M*) (M* = M_?sin?a I M_Jcosta sin®y) (3.3)

max
where Qmax (M) 1s the limiting angle of deflection of the stream in an
otllique shock wave for a glven number ¥ , then the shock 1s attached along
the edge. The inequality (3.3) can be rewritten in the form

Q>>m®deV1+Qﬂ (K= M_sina, Q =sin 8 /uma) (3.4)
The reglon corresponding to the fulfilment of this inequallity has values
of the parameters H#_, a and 6, lying (with y = 1.4) above the curve
depicted in Flg.5. The boundary values of the required functions at the
edge of the wing are 1n this case deter-
mined by the relations at the shock and
the condition p = 0 . For values of
the parameters ¥, a and ¢, not
// satisfying the inequality (3.4), the
2.6 /' shock in the case where conical flow
/ exists 1s attached only at the vertex
1/// of the angle of the leading edge. Then
the gas from the pressure side of the
‘//// wing flows round the edge to the suction
4 slde. VFor sufficiently large values of
the pressure ratio between the pressure
10 and suctlon sldes of the wing the com-
7 ar 6z 03 04 05 08 ponent of velocity normal to the edge
Fig. 5 must reach sonlc velocity at the edge,
i.e. v =g when 9 =g, .

J.A(
2

L8

Xfa

This equation, or the relation v’= = when 0 = 6, which is equivalent
to 1%, following from Expression (3.2) for u’, constitutes the boundary
condition in the solution of the system (3.2) in the case when the defining
parameters M, o and g, belong to the region below the curve in Fig.5.
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Let us consider two examples. Suppose that the leading edge of the wing
forms an angle, one side of which is perpendicular to the direction of the
free stream (i.e. 6 = — % there), whilst the other 1s characterized by
the angle — pm < 8,< %w . The angle of attack of the wing o« will be
assumed to be such that the shock for 9 = — gn would be attached to the
edge. It is evident.that in such case for 6,= gn there 1s a simple exact

solution in which solution in which
u = u,cos 8, v = — uysin 8
H=1FkcosB
whillst the quantities and

are constants (translational
flow behind the shock); ug, X,
p and p are found from the
relations (2.2) at the shock
(when vV =0 ).

We shall begin by graduslly
decreasing the angle 8, . The
flow resulting from this can e
divided into the three follow~-
ing regions: two translational
flows with-3n < 6 < ~u and
with u,< 6 < 8, and included
between them & flow with varisble parameters, We denote by -~y and
the angles formed by the bounding characteristics of both translational flows
with the direction 6 = O ., The parameters of the gas in both translational
flows and, in particular, these mﬁleu are determined with the help of the
shock relations. To deseribe the flows arising with variation of o,, we
turn to Pigs 6 and 7, in which are depicted, respectively, the quantities v

and g% as functions of 6 for fixed ¥ and o &and various angles 9,.
When 8,= §nv_we have v = — y,8ing (the lowest curve in Fig.6) and
a® — = ug® (sin®p— sin® 6) (the uppermost curve in Fig.7). As §, decreases

the solution in the interval u,< ¢ < 8, is easily found from the relations
at the shock. The corresponding curves are sketched in FPigs. 6 and 7 regioni.
For construction of the curves in the lnterval -y < 6 <y, {in the case
when the shock is attached), or in the intrval — i < 8 < 8, (in the case
when the shock becomes detached) we notice that the point § = —pu (corre-
sponding to the charapteristic) is singular for the equation determining
dv/de . Indeed, this equation can be rewritten in the form

dv 1 . - , ooy |
= — S, [ (b — PV H + 0V, (V, — )] e (wll -+ 9H ) 671

: S
_’r_,. 0 g2 Tho__
Ty PPy (S 1>}

The numerator and denominator of the
second term in the right-hand side evi-
dently vanish when § = —y (of course
the same applies when o = yg). Accord-
ingly, from the point § = — u_ there
issues a pencil of curves »{8), which
differ in the initial value of the deri-
vative dv/40 and, consequently, a pen-
cil of curves g*— v®. If we introduce
the notation

dv

vy = — Uy A

a0 L e +

then i1t is easy to show that
== {2u0—~ (T + 1.) A] vy
Bom=—p

As A increases from zero the curves
of uv(e) and g"— v® extend up to 8= u,

;0_ (a3— v?)
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where they join up (with a discontinuity of derivatives)with the correspond-
ing segments 1n the region 1, relating to translational flow. Starting with
a certain value 4 , the vanishing of the difference g°— v® occurs earlier
than the vanishing of the numerator of the second term in the expression for
dv/de ; the derivative 4v/de becomes infinite at such a point, It is obvi-
ous that the solutions for such A correspond to flows with detached shocks,
whilst the value of 6 , at which ¢°~— »® vanishes and v’ is infinite, is
Just the angle g, of the edge ot the wing. The behavior of the curves
described is illustrated in Figs. 6 and 7. The expressions derived above
for 4v/dae and d(s"— v*)/40 when 0 = — u show that the initial values
of the derivative dv/d6 are included between the limits

i r—1
—US 3 e=_p<—’r+1u°

Using Figs. 6 and 7, it is easy to construct the pattern of the stream-
lines and the acoustic characteristics for the qualitatively distinct cases
of flow past a wing, In Figs., 8'a, b and ¢ 1is shown the successive replace-
ment of the behaviors of flow as the angle 0, 1s decreased. The streamlines
are shown as full lines, and the two famillies of acoustic characteristics as
broken lines. Fig. 8 a corresponds to the behaviors of flow with an attached
shock wave, In the region of conical flow with variable parameters there 1is
one straight streamline (v = 0), the direction of which is asymptotic for
all the other streamlines, Such a peculiarity of behavior in conical flows
is well known; as already noticed above, in three-dimensional conical flows
the gresence of the corresponding singular points was established by A.Ferri.
Fig.8, b relates to flows with detached shock, for which the curve of »(g)
has a segment with negative values of v (Fig.é). In this case there occurs
one more straight streamline. From this second streamline the flow diverges out-
side across the edge of the wing, and inside asymptotically approaching the
direction of the first straight streamline. On further decrease of the angle
8, both straight streamlines merge and disappear; all the streamlines then
intersect the edge of the wing, as shown in Ms.é ¢ » Further decrease of
the angle 0o,, falling to change the qualitative pattern of the flow, leads
to contraction of the region with streamlines directed outwards. Finally,
when 0, < —u the vwhole surface of the wing is occupaled by a translational
stream of gas.

Fig. 8a, b, ¢

For the second example let us conslder symmertical flow past an angle,
i.e. let us take 6 = — 6, and let us assume, moreover, that 0,<C/,m.’
Obviously 1t 1is sufficient to consider the solutlon only for (< 0 < 9,

Oon the line of symmetry 0 = O the conditions v = O , dg/de = O ,
d45/d6 = O must be satisfied. The vanishing of the derivative gu/d9 fol~-
lo;s from these conditions and the alternative form of the expression for
du/de

du 1 dH | o v pHdS
2% = oo | 41T S Y ki
de—”+pu11[<l’_1’ )d9+p VilVe— ) — 3175 dej

The system of equations (3.1) gives the following conhection between the
values of the required functions when 6 = 0
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‘ (3.5)
CU/S“ \ (eo - Poo) Hy -+ poo (W - VroHo) (Vr() —_ ”0) =0
— 2
\ \& > Sho Cno®) =50, vng? = gyﬁvrﬂi
[}
,IY)__ J___ _7/ el . 1y
’ LU G RO 5o P
N = 2 " r—1po ’ *T o
M=oo, P=l4 Accordingly, the initial values of all
. the functions can be expressed, for example,
in terms of y, — the velocity of the gas
at the axis of symmetry. In terms of vy
we can also express the value of the deriva-
0 tive dv/20 on the axis of symmetry
g 7 Aoy p® (W — V¥, H,)
Fig. 9 d |, = T “o— polly

By arranging the cholce of the value of y, we can satisfy the boundary
condition at the edge of the wing where g = 3,, .

Let us consiger the types of flow which arise for various values of y,
a and p, . PFor the sake of simplicity we shall carry out the analysis
for the case p" = 0, 1i.e. = o , In this case the expression to be
used in the analysis for du/de when 6 = 0 can be written in explicit
form as a function of Uy » hamely

{dv) 1 3y41 T—1
V,, d6 Owcosa-—u°< 2 u®® —2u° cos a + 27 ) 3-8)

Here ug- w/V, . Let us find now the values of u° which correspond to
the case 6, = §m , which will be needed later.

To the relations (3.5) it is necessary in this case to add also the con-
dition of conservation of mass at the shock, which for 0, = #nr has the form

PottoHly + 0% (W — V oH) =0

M use of this relation, when ¥ = » we find without difficulty the
equation determining the values of u° for the case og,= #n

1 —1
Y;’_Y u‘f*ltl cosa—{—T—i?—:O (3.7)

The expression so found can actually be obtalned also from Formula (3.6),
followling from the equation
of conservation of mass.

a v/ b 2 © For this we have to make

use of the relation Ju/do =

- — y , valid for the trans-

lational flow with gy jm.

1
|
1
! In Fig.9 the curve 1
! u® corresponds to the vanish-
I ing of the numerator in
wsa Expression (3.6) for dv/de
when 6 = 0 , On the strajght
line cos g — u’= O the
Fig. 10 a, b, ¢ denominator of this expres-
sion vanishes, and curve 2
glves the value of y° when A,= ¢n , as & function of cos a , 1.e. of the
angle of attack.

Depending upon cos ¢ there may arise three essentlally distinct cases.

a) The case oea>yVy’—1 . In this case when §°= 3n
streamline flow 1s possjble past the wing with an attached shock. The
dependence of v; on 1y, is depicted in Fig.10 a; the points u,, and u,,

| 1
) !
] I
1 t
| |
1 1

1 A
N~
l Yo Upjtosc cosa
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denote the two possible values of the velocity u, when @,= #r . The
dependence v, = — g sin 8, corresonding to the larger of these two values
of the velocgty, is depicted by the lower curve in RPig.lla. As u, increases
from the value u,, the deriva-
tive vy increases, The inte-
gral curves v(9) are shown in
y Fig.lla ., This behavior is simi-
4 lar to that which wes considered
in the first example. In Fig:
128, b, ¢ are shown the replace-
3 ment of the behaviors of flow as
8, decreases from gm to O .
As u, changes from u,, in the
c direc%lon of smaller vaiues, the
le @, at first grows from
n  to a certain limiting value,
Pig. 11 &, b, ¢ and then decreases, reaching the
value #nm again when - Upgs
which corresponds to the second possible behavior of flow past the :ing with
9o= #n (with a stronger shock), Further decrease of 1y, leads again to &
decrease 1n 6, .

The analysis of the flow with wu,g< u, <u,, requires the introduction of
shocks inside the region of gas flow. Having regard to the limited interest
of this case and the case uy< ugy, We shall not conslder them in more detail

D) The case Ly ' VE+FHa—1)<cosa<T? Vy—1

In this case the dependence of v,’ on u, has qualltatively just the same
form as before (Fig.l0b ) but the flow past the wing with attached shock 1s
impossible, As u, decreases from V _cosq the derlivative u,’ decreases
from « to 0O , becomes negative, reaches 2 minimum, and then inctreases
again. The curves ¥(g) are shown in Fig.llb, For each 6, we obtain two
solutions and moreover there is a greatest value of g, for which conical
flow 1s still possible, The possible behaviors of flow correspond to thosge
shown in Fig.l1l2 b and c.

e} The case cosa<ir? V@Br+ 1)(t—1). The dependence of

v ‘o u, 1s depicted in Fig.10 ¢, and the curves v{g) in Fig.1l c. In this
case only one behavior of flow is

possible, in which all the stream-

lines are directed from the axis
of symmetry outwards across the
edge of the wing. We notice only
that as cosq decreases the values
of 1y, become negative, l.e, the
stream becomes directed towards

b c the vertex of the wing.

M In F:§&13, relagingligethe case
- l y = 1.4, 8 are
Flg. 12 a, b, ¢ plotted dividing the reglons of
different forms of symmetrical flow
past & triangular wing. In the regions 1 to 4§ conical behaviors of flow are
possible. Moreover to each pair of values of the angle of attack o and
the semlangle at the vertex of the wing 6, there correspond two solutions,
Just as for flow past a plane wing of infinite span (8,= #w) . 1In the
regions 5 to 7 conical flow does not exist (an exception is the intersection
of regions 6 and 4). 1In region 1 and in the parts of regions 2 and 3 to the
left of the broken line the trailing edge of the wlng does not have any
influence upstream {in the solution with the weaker shock), and consequently
solutlons obtained for the infinite wing are valid also for the finite wing.
In the remaining region of variation of the parameters it is necessary to
consider the finite wings. -

For example, at the bottom of Fig.l3 we show the varaition in the pattern
gftflg\élo past a wing with go= 10° with varliation of the angle of attack from
° L

In region 1 the shock 1s attached to the leading edges of the wing. Behind
the shock there 1s a region of translational flow, transforming in a conti-
nous manner {across the acoustic characteristics) into a flow, the streamlines
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of which asymptotically assume the direction of the center line of the wing.
In the transition from region 1 to region 2 the shock becomes detached along
the edge, but retains a common vertex with the wing. The velocity component
normal to the edge of the wing is equal to the veloclty of sound. The lines
at which the velocity component vanishes and from which the stream diverges
to the edges of the wing and to 1its center line, grow closer together as the
angle of attack lncreases, and in the transition to region 3 (Fig.13) they
merge with the center line {for
wing semiangles greater than a
certain 6,*(¥) this merging does

0 2 not occur until the conlcal charsac-~
4 ter of the flow breaks down). In
1 the transition to region 4 the flow
i x of the center line of the wing
\ changes direction: the gas begins
, \ \ to flow towards the vertex of the
/ A \ 5 \ 7 wing. For the finite wing this
N denotes the occurrence of a criti-
Y \ cal point on 1ts surface. As the
7 ~~— FEAN angle of attack increases, the
\ é B e RS conical flow becomes impossible on

entry into reglon 5 and 1t is

A
& ¥/ 12 50 a
J p 5 § 7 necessary to consider the finite
f dimensions of the wing. As the
angle of attack increases further
the critical point moves towards
l the trailing edge of the wing and
! leaves it. On entry into reglon
| 6 the shock becomes attached along
the trailing edge, and near it
o “ there arises a reglon of transla-

0 0
’
Fig. 13 tional flow which greduslly grows
* and on entry region 7 1t occuples

Z(!§;
|
the whole surface of the wing.

With certain modifications the description of the transformations of the
flow patterns applies also to wings with other vertex angles.

Let us notice a detail of fundamental interest, It was remarked above
that for one and the same infinite wing, either conical flow does not exlst,
or else there exist two different conlcal flows, As 1s well known, in flow
past a wedge (8o= §w), out of the two poseible flows the one actually real-
ized is that which corresponds to the weaker shock. The same is true also
for a triangular wing with the shock attached along the edge as in region 1.
But with gradual increase of the angle of attack and continuous transition
from region 1 to region 4 it turns out that the stronger shock corresponds
to the solution. The solution with the weaker shock now turns out to be one
which is not realiged. This, evidently, is the first example of two-valued
steady flow with shock waves, in which we have to accord preference to the
solution with the stronger shock.

In conclusion we notice that a brief derivation of the fundamental system
of equations and an analysis of certailn of their properties was given by the
author earlier in (6and T].

In [8] contains examples of the calculation of flow past a triangular
wing in the behavior corresponding to Pig.12 b, by using the first approxi-
mation of the method of integral relations.
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