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In the solution of many applied problems of the mechanics of a COntinUOU8 
medium, reducing to systema of partial differential equations, the methods 
of integral relations have found a wide application. These methods make It 
poaelble, ln an approximate solution of the problems, to decrease the number 
of Independent variables ln the differential equationa and even to reduce 
theee equation8 to algebraic onea. 

Great popularity has been achieved ln the course of fifty yeare by the 
method of B.Q.Ctalerkln. As Is well known, ln Gal.erkinls method the form of 
the solution la chosen a priori, whilst the integral relationa, turning into 
algebraic equations e.erve to determine the constants appearing ln the solu- 
tion. Kantorovich cl] proposed ln problems with two variables to seek a 
solution ln a form contalnlng undetermined functions of one variable, and to 
determine these fun&lone from the ordinary differential equations obtained 
from the integral relations. 
mechanlce 

In an important particular problem of fluid 
- the theory of the boundary layer - such an approach had been 

employed earlier ln the method of integral relations by von K&m&n [2]. 
In a number of problems the method of integral relations enables one to 

obtain good results with a very small number of approximations and even ln 
the f lrst approximation. For this a considerable importance attache8 to the 
a priori choice of the particular stipulated solution, based on the use of 
supplementary information on the form of the required solution (as examples 
we may cite the Kochln-Loltslanskil method ln boundary layer theory [2] or 
the method uaed by the author ln the calculation of one-dimensional unsteady 
gas flows with strong shock waves [ 31). The application of high speed com- 
puters make6 It poaalble to effectively find sufflclently high approxlmatlone 
In the method of integral relations and at the same time makes It posalble 
to relax the xWlulrenU?ntS ln the a priori choice of the specified part of 
the solution and the form of the original equations. However, the use of 
h&h approxlmatlone complicates the qualitative analysle of the aolutlon of 
the aPPrOximating WE&em of equation8 and the interpretation of the results 
obtained. In the present paper the method of integral relations la applied 
to three-dimensional gas flowa with shock waves. We make a qualltatlve ana- 
lysis of the system of equations of the approximation of zero order, and 
these equations are interpreted as the equatlonb of two-dimensional motion 
of gas on a atreamllne surface. 

Let UII turn f1re.t to the basic Idea of the method of integral relations. 
Let us consider a system of rr 
relating to the functions 

flret order partial differential equations 
uI , . . . 

xar I 
u, of the three lndependent variables x,, 

L* (u) = 0 (i = 1, 2, . . . , n) 

Suppose that It is required to find the solution of this system in the 
region D, and we shall assume for deflnltenesa that the region D ia 
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bounded by the surface X(X, ,x2) - 0 and the surfaces z == z,,, (xL, .T*), 
2 = Zg (Zl, X2). 

We Shall assume that the boundary conditions have the form $r(~,~,,~g)- o 
on the surfaces 2=2 
x - 0 (depending on th% ,“~~e=,f”‘t~e”d,dob~~~“ther’~~~~Cer conditions can also 

z) = 0 on the surface 

be different). 

Suppose that we have succeeded In finding the system of functions 
Q.(x,,x~,z) PossessIng the property that any function u(x,,x~,E) contlnu- 
ous In the region D , can be approximated by a certain linear corn&nation 
of the functions of this system. 

We shall expand the approximate solution of the problem In the form 

N 

To determine the coefficients UkT' involves taking the required number 
of integral relations (the conditions of orthogonallty of the expression 
I,~(~(N)) with the functions $,,,) 

Ls 

s Li ( u’~‘) tern (~1, ~2, Z) dz = 0 (m=O, 1,. . .) 

Iw 
where $.(r, ,~~,a) 1s a system of functions, complete ln the region D 
Particular, the systems of functions (0. and $, can be coincident), and 

(In 

also the boundary conditions qIPr (u(N),cz~, 
between the functions +,,,(N). 

x2)=0, giving cloeed relations 
The Integral relations turn Into first order 

Partial differential equations for the functions uk,,,(ly) In two irmdependent 
variables. The solutlon of these equations Is expanded on the region of the 
(x,,x~) Plane bounded by the curve X(X ,xp) I 0 If the boundary condl- 
tlOnS on the boundary of the region had \he form $2 (u, xl, xa, z) = 0, then we 
should find the required conditions for the two-dimensional problem from the 
relations 

2s 

c 
qL* (uCN), XI, x2, 2) $,,, (21, ~2, 2) di = 0 

. 

2u.l 

The formulation of the problem Is generalized without difficulty to the 
case when, for example, the surface E - I, 
mines Itself. 

(x, ,zp) Is not given but deter- 
Then the conditions on the surface 2 I I, take the form 

$h. (u, 21, xi!* Z? az,/ 8x1, az, /i3xz) --: 0 

and the number of them Increases by one. 

For the choice of the functions cp. and $, the following general method 
can be recommended. Let q.(a) be a system of linearly Independent functicns, 
complete on the segment [a, ~1. 

Then the system of functions q,(C) , where 

Is complete on the segment 
the system of functions 

Therefore In the region D we ~8x1 use 

A dlstlnctlve choice of the orthogonal functions #, was proposed W 
Dorodnltsyn C41. The functions $, start off being dependent on the chosen 
approximation and are determined from Formulas 

%n (N) = i 
1 ior O<~<(m-+ 1)/N 
0 for (nl.+l)lN<5<1 

(m=O,i,...,iv-I) 

For the functions (P, used for the approximation to the solution, we take 
the power functions Cm .* Using the choice of the functions Q_ and $. , 
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Belotserkovskii gave an effective numerical solution of a number of problems 
of two-dimensional flow past bodies with shock waves present [5]. 

1. The @aoStl OquEMaaS. Let us apply the above general considerations 

to the problem of supersonic streamline flow of an Ideal gas past a body. 

For slmpllclty we shall assume that the portion of the surface of the body 

under consideration Is plane (in particular, It can be assumed that the case 

In question concerns the flow past a plane wing at an angle of attack). To 

describe the motion of the gas let us introduce Cartesian coordinates, choos- 

ing the axes of x and I/ to lie ln the plane of the body surface, whilst 

the a-axis Is directed along the normal to It. 

The equations of motion of the gas In the layer between the surface of 

the wing and the shock wave will be taken In the form 

az + -g (pv2 + p) _c *a; = 0, 
apwu a,+aF + -a 

a_ (PW2 + P) r 0 (1 .l) 
apUS r+ag+y,o, apui* --+!g+!!g=o 

Here u, v, I are the velocity components along the axes; P , P , s rt* 

are the density, pressure, entropy and total enthalpy of unit mass of the 

gas, respectively. For a perfect gas with constant specific heats 

&F, i" = 
u"+ vz+ w2 

2 
+--r_P 

T---1 P 

The last equation of the system (l.l), expressing the conservation of 

total enthalpy ln a particle of the gas, Is not independent - It Is obtained 

as a result of the remaining equations of the system. 

The system of equations (1.1) can be rewritten In the general form 

Here 

Xl = 5, 52 = Y 

An= PU, A,2 =P, Bl= pw, A21 = p2+ p, 

4, = PVU, Asa = pv2 + p, B, = pvw, AlI = pwu, 

Abl = pus, A52 = pvS, B5 = pwS, Ael = pui*, 

(1.2) 

Aa = puv, B, = pun, 

Aa = pwv, B4 = pw2 + p 

A,, = pvi*, B, = pwi* 

Let h = h(r,y) be the thlcla?ess of the layer of gas between the surface 

of the wing and the shock wave . On the shock wave, I.e. when 8 - h(x,y), 
there must be fulfllment of the conditions of conservation of mass, momentum 

(In projection on the three axes) and of total enthalpy. These conditions 

in the notation Introduced above can be written down In the following form: 

( Bi - Aij a$) 00 ah 
3 z=h 

=Bi”- Aij 6 (i = i,2,3,4,6) 0.3) 

The superscript m here denotes values ln the free stream. 

When t - 5 , i.e. for entropy, the conservation law does not hold at 
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the shock wave, as Is well known. The value of the entropy behind the shock 
wave &Is expressed with the help of the equations of conservation (1.3) In 

terms of the parameters of the free stream and ah/ax,. For a perfect gas 

with constant specific heats 

Making use of this expression, we can write for t - 5 also 

(1.4) 

(1.5) 

Here we have introduced the conventional notLtlon Bsm = BImSh, 

A$’ = A,$$,. 

We shall introduce, ln accordance with the usual theory, instead of the 
coordinate I the variable c according to Formula 

The variable C ranges from - 1 to + 1 , and C - - 1 corresponds to 

the plane of the wing, whilst 6 I + 1 corresponds to the shock wave surface. 

For the functions cp, we take the Legendre polynomials p,(C) , forming a 

complete system of orthogonal functions ln the Interval [- 1, + 11, and we 

shall approximate the required functions, for example the function u , by 

expressions of the form 

z?)= g(E) U,(N) 

which we shall call the yth approximation for these functions. 

For the orthogonallzlng functions 4. we shall likewise take the Legendre 

Polynomials P.(C) . Let us multiply term by term the equations of system 

(1.2) by the Legendre polynomial of the mth order p,(C) and Integrate them 

with respect to z from 0 to h 

Carrying out a simple transformation and making use of the properties of 

Legendre polynomials, we obtain 
for nl = 0 

a$ $- 5 Aij dc + (Bi -- Aij ejzzh - (Bi),=o = 0 
J 

f0, -iit = 1, 2, 3, . . . 

(to be continued) 
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- \ Bi i (2 m - 4k + 3) PM~+~ 
-1 k=l 

d5 + (& - Aj c),=h - (Bi).z=o = 0 

n=fi mtl 
2' 2 

respectively for m even or odd) 

Using the conditions (1.3) and (1.5) on the shock wave and the condition 

w(x, , xp, 0) - 0 on the streamlined surface, we can rewrite this system of 

integral relations In the following form (f, - 1, . . . . 6) : 

a h -- - - 
axj 2 

\ Aijdc+Bi” Aij$j (B&c,, = 0 (m=O) 
j 

-1 
1 

&' h -- axj 2 \ (Pm-Ptn-JAjdC++~ 3 5 m(Pm+Pm-dAfjG-- 
-1 -1 

(1.6) 

- 5 Bimil (-l)m'k(2k-/-l)Pkd~=~ (m=1,2,3...) 

-1 k=o 

Here (B&=0 = pm whilst the remaining (&)z=c = 0. 

Let us use the Integral relations just written d6wn, the boundary condl- 

tlons (1.3) and (1.5) et the shock wave and the boundary condition w - 0 

at the streamlined surface, to determine the coefflclente u,,,(~), VmcN) ,... 

In Nth approximations of the required functions. 

Moreover for the lnltlal five Independent equations of egatem (i.1) let 

us take the equation of contlnulty, the projections of the momentum equation 

on the axes of x and y, the equation of conservatton of entropy and the 

equation of conservation of total entelphy In the integrated form. For 8 

perfect gas with constant specific heats the lest equation (Bernoulli's 

Integral) has the form 

In obtaining this integral we have already uaed the condltlon at the shock 

wave (1.3) with t - 6 . 

Accordingly, with V > 1, for the determination of the 5 (N + l)coeffi- 

clents of the Nth approximations to the quantities UIN), VtN),WCN), ptN), pcN) 

and the function h , the system of relations contains the 4N first Qlf- 

ferentlal equations of the system (1.6) (with t - 1, 2, 3, 5 and m-0, 1, 
. . ., N - l), and the N final relations 

5 [I( pm P 
23 + 9 + wa 

2 
_i*" + 

) 
&,]d5 =o (~.=o,l,...,N--), (1.7) 

-1 

the four relations at the shock wave 

B!~’ _ AijtN) .?.$ = 
1 

&=‘_ Aijm $ for f=l, i = 1,2,3,5 
3 3 



744 O.O.chemjl' 

and one relation at the surface of the body 

&“) = wofw_ w (JV) 
1 + . (-1)"w.v (N) = 0 for ; = - 1 (I.81 

With N - 0 , I.e. in the zeroth approximation, the system of relations 

for determining the five quantities u(O), v(O), w(O), p(O), pcoj and h consist 

of the first four differential equations (1.6) with t - 1, 2, 3, 5, the 

first relation (1.7) and condition (1.8). 

This syetem of equations of the zeroth approximation has the following 

form (the indices for the required quantities are dropped): 

on 

(1.W 

apuh 
x+ag 

P+g+Vg)+ &(P-Jqh+p”V,(u-u)=O 

@+$+u$)-+ ~(P-P”)h+p”l/,(V-v)=O 

ph(g~+v~~)+pml/,(~I,-‘r)=O 

u2 ,- L.2 

2 
+_LP= 

r--i P 
zfl+ _Lpco 

r-fPW 

Here SI, Is determined by Formula (1.4). 

The equation of continuity and the projections of the equation of motion 

the x and v axes can also be given the following alternative form: 

Ph 
cla 

(a2--- U2)$ - +$ + $j + (2- 9) $- + 
J 

elther pvh au 
( aY 

_~)+(P-P”)~+r”l:,(li--u)-_~yh~~=O 

or pu~(~-~)+(p-~p")~+~mC.,(~-~)-_~~h~=o 

(P - P”) (u g +vG) fP”V” p-u)u +(V---)v + . 
Y-l 

+ *lp y !S,--s)j = 0 

The solution of system (1.9) can be carried out by methods analogous to 

those used In the solution of problems on ordinary two-dimensional gas flows 

(It Is only necessary to assume that the equation of entropy Is essentially 

nonlinear). In particular, for supersonic velocities we can use the method 

of characteristics for the solution of system (1.9). 

The system (1.9) has the following families of CharacteriStlCS: 
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I 

uc+n Jf/U2+-2.~-a” v 

y1,3’ = ___ 
@h?J 

uo’ - aa I !I:<’ = - 3 !I,’ = I 

u “‘h, 
(the characteristics of the third family are double). 

Along the characteristics the following relations obtain: 

phuS’ + p=‘V, (S,, -S) = 0 

Here 
Y-l - 

CD -_ (p - p”) (uh, + z$J + p”Vv [(U - u) u + (V - v) 2’ + +i P ’ (S/,--s)] 

,,,$_?+- & [(p - p”) .I/,, + &‘“V, (V - v) - & ph a+l 
The quantities du/d?~, dv/.dZ/, dp/dy, aSjay are easily expressed in 

terms of the corresponding values of u', v', p' and S’, for example 

ph(v - UZJ’)~~ = - phuS’- p"l/,(s/, -19) 

The first three families of characteristics are the usual acoustic char- 

acteristics and streamlines of two-dimensional problems of gas dynamics. 

The fourth family Is a new one, having no analog In the ordinary two-dlmen- 

slonal problems of gas dynamics. 

To solve the system thus obtained we need to formulate the boundary con- 
ditions on the boundary of the region In the xv-plane. In what follows we 
shall restrict ourselves to the case of flow past a plane wing with sharp 
edges. Then the boundary of the flow region under consideration Is the 
edge of the wing. 

It Is evident that on the part of the contour where the shock wave Is 
attached to the edge of the wing, h-0, whilst the values of the remaining 
required functions are determined from the relations on the wave. 

The boundary conditions on the remaining part of the contour ln the gene- 
ral case cannot be specified In advance, so that the flow on the pressure 
side of the wing and the flow on Its suction side have to be calculated 
together. 

Let us suppose Ideally that with fixed conditions 3.x-1 the free stream the 
pressure on the suction side of the wing Is reduced. The influence of this 
decrease of pressure will be transmitted to the pressure side of the wing 
along that part of the edge where the shock wave Is detached and the velo- 
city component of the gas normal to the edge Is less than the sound velocity. 
As the pressure 1s lowered this component will grow until It reaches the 
sound velocity; after that the Influence of a fall In the pressure on the 
flow on the pressure side of the wing will cease. 

Accordingly, for a sufficiently large velocity of the free stream and 
large angles of attack, when the ratio of the pressures on the pressure and 
suction sides of the wing Is sufficiently large, we must take vn 2 a for 
the boundary condition at the boundary of the region (I.e. at the edge of 
the wing), where h # 0 . 
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2. Tlae Uneorlaed equations rud their solutlcal. Suppose that the leading 
edge of the wing has a straight line segment, and moreover that on this sec- 
tlon the shock wave is attached to the edge and that the flow behind it is 

supersonic. Then In the region of influence of the straight segment of the 

edge the system of Equations (1.9) gives an exact solution, corresponding to 

a translational flow of gas. If the segment of the edge differs only sllght- 

ly from a straight line, then to find the flow in the region of Influence, 

and also In a certain neighborhood outside it, we can make use of the line- 

arized equations. 

Let us assume that the difference in the stream behind the shock from a 
translational stream Is characterized by the small parameter E . For exam- 

ple, let us assume that the equation of the leading edge of the wing at the 

segment under consideration has the form x I x*(y), where r"(y) - W,(Y), 
and x is a quantity of the order of unity. Let us write the solution of 

the system (1.9) In the form of series in c 

U=Ug+EU1+..., U=uc+E2)1f..., P=Pc$ep,+..., 

(2.1) 
p=@~+ap,+..., S=&+E&+..., h=k(X--*)+Ehl+... 

and let us restrict ourselves in what follows to the determination only of 

the terms written down In these series. Let us substitute Expressions (2.1) 

and also Fxpresslon S,= S,,+ c.S~,+ . . . in Equation (1.9). Bearing In mind 

that In the case under consideration the quantities with the subscript 0 

and the quantity k are constants, we obtain for the determlnatlon of these 

quantities the following system of relations (the relations at the shock): 

pcuck + p"(W-UUk)= 0, pc- p”-~poUo(U -z&o) = 0, vo = v (2.2) 

po-pc_pco~(J&__,rJ+o, z!f+.z + ._LPo 
T---1 PO 

Here instead of the equation s,,- SO, obtained by 

equation projected on the normal to the wing, we have 

equation itself. The system for the determination of 

of the series (2.1) has the form 

vm2 -I- T POD 
=- -- 

2 ’ r---lpas 

using the momentum 

written down this 

the following terms 

& [Pofw--*) Ul$ u&(~--*)pll + 6 [pok (x-x*) u,+u,k(s-xz*)p,]+ 

-t (POUO - P”U) $- + (POVO -p=V)(~-kx*')= 0 

; 12Pouok (5 - x*> u1-t Uo2k (x - z*) p1+ k (z - Lx*) PI] + (2.3) 

[Po~ow--*)vl+ poUok(z-z*)ul + ucvck(s---CCz*)pJ + 

+ u bouo - P’U) 2 + (pouovo - p”UV) (z - ks,‘) = 0 

(to be continued) 
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; bouok (5 - x*) v1+ povok (x - x*) 4 + uovok (x - x*> PI1 + 

+ $12p,v,k (x -x*) v1 + vo2k (z - x*) p1 + k (x - x*) pl] + 

+ (pouo - p”U) v 2 + (povo2 + po - p” - p”V”) (% - kx,‘) = 0 

a 
yjy uo(x - x*) s1+ [& Do (x - x*) As, - UOSh, = 0 

U&~+vov~+- =o 

Sl 1 Pl Pl ah 
s,= ----9 

7 PO PO 
sht=mz + n s - kxl’) 

m=_-2W--‘W+Wk) sht 

(1 + ka)* ’ 
n=- 2(W-Uk)V s, 

1 + k= IL 

Here S{ denotes the derivative of S, with respect to V: when 8 - 0 , 

i.e. 

2(r-1) (I- ll”‘/zq)” 
S{=--_ 

7 (T + 1) Poy-uY ( 
2 ~ (W-lJUh/ax-Vah/ay)a \ 

VT% 1 + (ah / ax)* + (Z’h / ay)% i 

By the substitution 

k(x-x*)u,= U,, k(x- x*)pl=PX, k(x-x*)&=a, 

k(x-x*)q=V,, k(x-x*)p1=&, h l-kxl= H, (2.4) 

the eyatem of linear equation8 (2.3) is reduced to a system of linear equa- 

tions with constant coefficients 

gy (POU, + uo&J + 6 (POVX + vo%) + 

+ bouo - P"U> a2 + (povo - P”V) a3 = 0 

-g (pouo~, + E) + & Polo& + 

+(u--o)(Pouo-p~u)a~-poov(u-uo) $+ 0 

g POUOVX + & (Povoq + P,) + pouo (U - uo) J!$ = 0 

& ~~~,+~v~a,--u~k 
3Y ( 

i3H 
m * + n z&= 

3Y 1 
0 

Thle system hae four real characteristic directions, determined by the 

relations dv/dx - B, . Corresponding to this direction the aolutlone have 
the form 
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p, = uovo - a, vu+ (uo2 f vo2) ( 
uo2 - ao2 

p3= ‘0 
uo 

PI = PO@ 1% - vcl) VxCL), G,l = 0, p,2 = po (/32&o - 7’0) Q2), 6,2 = 0 

Rx1 = 3 (hue - vo) lix(l), H,~ = o, Rx2 = a$ (f&u,, - vo) IJx’*‘, Hr2 = 0 

u0a02 u,s = - ___ 
(r - 1) S” (U02f vo2) 

G 
xl 

P,, E 0 Rx3 = --- -ilo_ 5 
so x 

v,:+ = - voao2 
(r - 1) SL(uoa -/- ro2) ci 5,s *’ = 5, (Y - P32), Hx3 = u 

When p4 = (1 + li")~o/zlo#[j3 (i.e. when V#Oo) 

Ux, = (U - uo - PJ) H,, Rx4 = $ [(~4uo --- v")C- rco(L: -- uo)j Hx 

Px4=po[(p4uo- vo) c- 110 (U--“)I H,, 11x4 = H, (Y - P4x) 
. 

If V- 0 , then &,= B,- 0 , and the functions corresponding to this com- 
mon characteristic direction have the form 

l:x = (CT --- ,zo) H, _ __ ao2 
(T- l)uuSo 5x, 

Rx=--P~~Lrn~~ 
CL"2 

p 6 
0 x 

The solution obtained shows that, as In ordinary problems of plane super- 

sonic gas flows, only perturbations of entropy, density and longitudinal 

velocity are transmitted along the streamlines of the unperturbed motion 

(it is easily seen that In the system of coordinates In which vO= 0 the 

equation Vxs- 0 holds). Perturbations of pressure, density and the compo- 

nent of velocity perpendicular to the characteristic are transmitted along 

the acoustic characteristics. The characteristics of the fourth family are 

lines of transmission of perturbations In the form of the shock wave (the 

thickness of the layer of compressed gas); perturbations of enropy are not 

transmitted along these characteristics. 

A straightforward geometrical consideration shows that the fourth charac- 

teristic direction Is the direction of the projection on the plane of the 

wing of the velocity component of the free stream tangential to the shock 

wave. More obvious Is another Interpretation of this direction. In the 

flow behind the shock wave let us consider the Mach cone Issuing from a Point 

of the edge of the wing. This cone Intersects the plane of the shock along 

two straight lines. We can show that the fourth characteristic direction Is 

the bisector of the angle between those lines which are the projections of 
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these two lines on the plane of the wing. Certainly, according to the physl- 

cal meaning established above cf the characteristics of the fourth family, 

as lines of propagation of perturbations ln the form of the wave, It would 

be more satisfactory If each of these straight lines separately were a char- 

acteristic. However, In the zeroth approximation we do not succeed In 

obtaining this result. 

The four arbitrary functions VP (Y - BP)c>, VP) (Y - B&9, 
(Jx (Y - 8347 Hx (Y - B447 appearing In the general solution, are easily 

determined In the region of Influence by means of the equation of the leading 

edge xl(y). 

Indeed, In accordance with the definition (2.4), the functions Ir,, v,, 

PXJ Rx, Ox must vanish when x I X* (the quantities ut, ul, pLt PI, SI 
remain bounded when approaching the edge of the wing), whilst the function 

& ls determined from the relation 

. ff, (Y - PG*) = - kxl (Y) (2.5) 

Representing each of the functions u,, V,, P,, R,, 6, in the form of a 

sum of arbitrary functions x , x T/’ (‘) v @‘), d,, H, with corresponding coeffl- 

clents and equating to zero when x - x*, we obtain 

UOQ ux = - P1vx(l) - P2JP - (r _ 1) so (Q + g) 0, + (U - uo - l-&C) H, = 0 

v, = vx(l) + v,(2) - v0a02 
(y - 2) so (uoS + 72) 6X + CHx = O 

p, = PO (P1hl- %) vxfl) + PO (Pzuo - %> vJ2) + 
+ PO mu0 - v*) c - 110 (U - u())] H, = 0 

R, = f$ (P1uo - vo) Vxcl) + 3 (p2uo - q,) Vx@) - 

- 5 Q, + f I(P,uo - %) c - uo (U - Go)1 H, = 0 

6, = 0 

Bearing in mind the last equation, we find that the two previous equations 

are consequences of the first two (in the absence of any entropy perturbation 

it follows from the vanishing of perturbations In the velocity components 

that there are no perturbations In the pressure and density). From the first 
two equations with 0,~ 0 we fllnd that 

V,'l'@ --1z*)= _(pz --p4)' +' - ""kx&) 
P1-Pps 

V,'a',(y _ Paz*) = _@l- p4)c + * - U" ks,@) 
PB-- Pl 

In the particular case when v I 0 , we find that 

c = 0, PI= ---2 = (Mo2--- 1)-1/a 

and hence 

V1x(l) (y - ,&x*) = - V,(a) (y + Plx*) = v ks, (y) (2.6) 
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Let US consider examples. 

the 
Let the leading edge of the wing consist of two straight line segments, 
equations of which are 

x=0 wheny<O, x=&y wheny>O 

1.e. let the function JC, (I/). ln Expressions (2.5) and (2.6) be defined by 
Formulas 

a(y)-= 0 for Y<% Xl (!I) = Y for Y > 0 

Then 

for E>O 

11, (Y) = - kY for y >o 

For negative values of the arguments all these functions are equal tozero. 

Let us find expressions for the pressure and for the velocity components 
u , defining ln the linear approxlmatlon the form of 
the streamlines, ln the four reglone separated from 
one another by the characteristics 

q G y + px = 0, y = 0, E = y - bx = O(see Flg.1) 

Regions Pl 2:1 

1 0 

2 - ‘ii? (PO - P”) ((Y / 2) + F) 

Fig. 1 3 l/z (PO -0 ((Y ix) - PI 

4 0 u- l&j 

Inside the angle formed by the characteristics y + gx = 0 and u - BX -0 
the-pressure Is reduced , and the greatest reduction of pressure Is equal to 

PO--P" 

-E21/MoZ--1 
for y = 0 

!l!he variation of pressure in region 4 , 
In comparison with the pressure ln region 
1 la of order 8' . All the streamlines 
arird Inclined to the side of posltlve I/ , 
asymptotically assuming the direction of 
the line y = E ((U- uo)/ 2uo)x (this dlrec- 
tlon corrdsponds to the singular point of 
Ferrl type for conical three-dimensional 
flows), bisecting the angle between the 
directions of the translational flows ln 

Pig. 2 regions 1 and 4 . 
It Is evident that the solution of the 

problem for the case when .x~= 1~1 , I.e. for syimnstrical flow Past a wing, 
can be obtained In the linear formulation by a simple suPerPosltion of the 
solution just found. 
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[z -En(y)] v1= 

u - uo 
-gj- 1x1 [Y + P (x - %)I - 21 [Y - P (x - exl)]} 

211 --f (V - uo) Xl' (y) for 2 -3 exl (y) 

I.e. V, tends to the required value determlned by the relations at the shock. 

Slmllarly, 

(z--*)P1= (PO-P) ~~l(y)--'/a(~l[y- P(z--x*)1+ 21[y + p(r--x*)]I 

For small values of x - S* 
p1+ l/2(po- p", 9%" (y)(s -r*) 

At very remote points in the region of Influence of the curved portion 

PO-P" a(O) 

fi=v/Mo2 1 

Let us oonalder now a wing having the plan form of an lsoeoeles triangle 
with the base turned towards the fYee stream. If the shook is attached to 
the leading edge then so long as the whole ot the wing lies In the re 

f 
ion 

2 Y 
of lnf+luenaa of the leadlnd edge, the i ow on 
the aurfaoe of the wing la translational. If 
we Increase the angle of attaak (or decrease 
the Maoh number w of the free stream, or 
lengthen the wing, deoreaslng the angle oppo- 
site the leading edge), then between the region 
of lnfluenae of the leading edge o? the wing 
and the lateral edges of the wing there are 
formed regions of flow with veritable parsme- 
ters (Plg.3). To make possible the use of the 
linear theory we shall suppolre that the equa- 
tion of one of the edges has the form 

Fig. 3 

where tanu-8, and 6 is a small quantity. 
At the edge of the wing we must have the con- 
dltlon v = a , which ln the linear approxlma- 
tlon oan be reduced to the following form: 

vp + Av,(2) = - & kuox co.52 p 
i 

e 
for y NNX p-- 

co.9 p 
2 

( 
3---r 2 \ 

A=rfl 2-- 
MO% I 

On the UIYZ of symmetry of the wing, I.e. I/ = l , It follows from the 
condition v - 0 that 

v,(l) + vx(2) =o 

From these conditions It Is easy to find that in region 1 

2 kuocos”p 
v Cl)_- x --r+i e tp I/,@) = 0, Ii,=0 

In the region 2 the quantities V,(l) 
whilst 

and II,, obviously remain the same, 

1/ 
x 
(2) _ A!- k"ocos"IL 

r+l e 
('1- 21) 

The solution In regions 3, 4 8nG so on, can also be found without dlffl- 
culty, but, bearing ln mind the size of these regions, ln the linear appro- 
ximation it Is sufficient to limit consideration of the flow just to regions 
1 and 2. 

Accordingly, In region 1, where the flow Is conical In oharaater, 
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At the point with the greatest value of x In region 2 

4E 
p = p0 - Tt_l p0v02 sin p co9 p 

The aoefflclent of normal force acting on the wing has the form 

i 

0 fo+ ir, < 80 
C,--c,“= 2 

- - ~!!?.- sin 6, cos f& (jh - &$ 
r+~pv,z fix p >00 

Here C”” is the value of C, ‘for the wing of infinite span. 

3. ooorfeel nowe, As an example of the uBe of the nonlinear equations 
let ue consider uonloal flows. These flows describe certain behaviors of 
flow past triangular, trapezoidal and other wings, the leading edge of which 
consist8 of straight line segments. In conical flows the parameters of the 
gae in the layer between the surface of the wing and the ehock wave do not 
depend on the dlstanae r from the vertex of the wkng (taken a8 the origin 
of coordknates), but the thickneee of the layer h 1s proportional to this 
distance. Meaeuring the polar angle e from the direction of the vector 
velocity of the free stream on the plane of the wing, denoting by u and v 
the radial and circumferential velocities, and setting h - r17(8), let us 
transform Equation (l.g), taking acaount of the conical nature of the flow, 
Into the form 

M-3 

9 
2puH + & pvH + p”Vy = 0 (3.1) 

Fl* 
a I PVH +pv2H+(p-p~)H+pmV,(v,4)=0 

4J 
(~-~~)(LEH+v~)+p~~“[16(Yr-~)~ 

2. 

[I j- fv (V,--- v) + T& py-qs/& .-S)] = 0 

Fig. 4 
pvH$fpW,(&-S)=O 

v,=w-v,H-v~ dH W=--‘t7,sina, V,=V,cosucos0, 
de 

V,=--VWcosotsin6 

The quantity Sc(una) is determ%ned by Expression (1.41, where 

vn8 = 
(W - V,H - V,dH / de)” 

1 +HB+(dH/dB)a 
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The third equation of system (3.1) determines dy/dg implicitly. The 

remaining equations can be solved with respect to the derivatives, as a 

result of which we obtain 

O(dH/dO, H, u, v, S)=o (3.2) 

du tp - f’, H + pm (w - I’,3 - I’,dlI / de) (I’,. - u) 
-=v-- 
d0 pvil 

dv 1 
a= pH (vs - a3 1 -pa2(2uH+vH') - puv2H + (p - p”)uH +p”Vvp [ 1 + 

+ 

dS Pcov, (sh--s) 

;le=- pvH ’ 

Let us consider the portion of the edge of the wing characterized by the 

angle e,<jtn. Simple geometrical consideration (Plg.4) shows that If the 

angle e0 Is such that the following condition Is fulfilled: 

sin O. / ton a > Cot ‘pm,, w*) (M* = v/MWasinzu + MM,* cos2u sirPO0) (3.3) 

where (Pmax(M) Is the limiting angle of deflection of the stream in an 
oblique shock wave for a given number jf , then the shock Is attached along 

the edge. The Inequality (3.3) can be rewritten In the form 

Q> "'Pma,(W~4 Qa) (K= M,sina, Q=sinBo/~a) (3.4) 

The region corresponding to the fulfilment of this Inequality has values 

of the parameters M,, Q and e0 lying (with v I 1.4) above the curve 

depicted in Flg.5. The boundary values of the required functions at the 

edge of the wing are In this case deter- 
J4 mined by the relations at the shock and 

the condition fl = 0 . For values of 

the parameters M,, c and sa not 

satisfying the Inequality (3.4), the 

shock ln the case where conical flow 

exists Is attached only at the vertex 

of the angle of the leading edge. Then 

LB the gas from the pressure side of the 

wing flows round the edge to the suction 

side. For sufficiently large values of 

the pressure ratio between the pressure 

LO 
u a1 

and suction sides of the wing the com- 
(zz 03 04 0.5 db Ponent of velocity normal to the edge 

Fig. 5 must reach sonic velocity at the edge, 

I.e. u - a when e I e0 . 

This equation, or the relation U'I (I) when 0 I so which Is equivalent 
to It, following from Expression (3.2) for VI, constitutes the boundary 

condition in the solution of the system (3.2) ln the case when the defining 

parameters M,, c and go belong to the region below the curve in Flg.5. 
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Let uts cont3lder two examples. Suppose that the leading edge of the wing 
form% an angle, one side of which is perpen&ieuIar to the direction of the 
free stream (i.e. e = 
the angle 

- bn there}, whilst the other is characterized by 
-#Me< . 

asaumsd to be such ?ha P 
The angle of attack of the wing U. will be 

the shook for e = - +n would be attached to the 
edge. It Is evident-that in such case for 8 
solution In which 

o,,l&io~h~w~~c~ simple exact 

u = t& cos 8, v = - ufi sin 8 

H = k GOS 6 

whilst the quantities 
f 

and 
p are constants (trans ational 
pno&phy the shock); ~0, k, , ,B 

are found from the 
relations (2.2) at the shock 
(when v=o)). 

We shall begin by gradually 
decreasing the an&e aa . The 
flow resulting from this can be 
divided Into the three follow- 

Fig. 6 lng regions: two translational 
flowe with-&n< 0 c--p %nd 
with y< e < and included 

between them a flow with variable parameters. We denote by 
8, 

--)i and ~1 
the angle% formed by the bounding ~aateristios of both tranelational flows 
With the direation 8 I 0 , The parameters of the gas in both tran8lational 
flows and, in particular, these Its 

7 
are deterndned with the help of the 

shock relations. To deacrfbe the low% arising tith variation of 0 , we 
tuun $ P 

-3 
s 6 and 7, in whiah are depicted, reepactlvely, the qUU&leS v 
as functions of e for fixed M and u and various tangles ea . 

uhep e,=&r. we haye v g-u, 
.= u, (sin* p-- slrks 6) 

sin 0 (the lowe%t curve in Flg.6) and 

.“: ;h?shook 

(the uppermost curve in Fig.?). As f$, decreaeres 
the so ution in the interval h< e < e. is easily found from th% relations 

The corre%ponding curves are sketahed in Figs. 
For oonatru&n of the ourves l.n the interval - )r < e < &, 

6 and 7 m&ml. 
In the case 

when the ehoolc la attached), or in the lntrval - W < 13 < e. in the case 
when tha shock beoomas detached) we notioe that the point 9 - -.u (COrre- 
spending to the oharapterlstlo) 1% soar for the equation detemnining 
au/a0 . Indeed, thle equation can be rewritten in the form 

The numerator and denotitor of the 
second term In. the right-h%nd side evi- 
dently vanish when 8 = - u (of course 
the same applies when e = )fg ). Acclord- 
3ngly, from the point e I - % there 
issues a pencil of curves v(e), nhleh 
differ ln the initial value of the deri- 
vative du/de and, consequently, a pen- 
cil of curves #- 9. If wa introduce 
the notation 

dv 
2% B=_p’= - uo+ A 

then it is easy to show that 
d 

x (as - va) = PO - (tu + 1) Al so 
0=--p 

As A increase% from z%ro the Curves 
Fig.7 ab of u(e) anb d+-tP extenduptoe- t.+ 
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where they join up (with a dlscontlnulty of derlvatZvea)wlth the correspond- 
ing segments in the region 1, relating to translational flow. Starting with 
a certain value b , the vanlahlng of the difference a'- 9 occurs earlier 
than the vanishing of the numerator of the second term ln the expresalon for 
dV/de ; the derivative au/de becomee lnflnlte at such a point. It is obvl- 
oui that the solutlona for- such A correspond to flows with detached shocks, 
whilst the value of 0 , at whlob as- va vanishes and v' la lnflnlte, Is 
juet the angle ea of the edge ot the wlng. The behavior of the curves 
aeecribed ia Illustrated in Figs. 6 and 7. The expresslone derived above 
for dV/de and d(aa- v’)/ae when e - - p show that the Initial values 
of the derivative au/de are inaluaea between the llmlts 

Ualng Flge. 6 and 7, it Is easy to construct the pattern of the stream- 
lines and the aoouetlc characterlatlca for the qualltatlvely dlatlnct cases 
of flow past a wing. In Figs. 8'a, b and c Is shown the sucoeeelve replace- 
ment of the behaviors of flow a8 the angle e. 18 decreased. The streamllnee 
are shown se full lines, and the two famlllea of aoOWtlC aharaaterletlce as 
broken lines. Fig. 8 a correaponda to the behaviors of flow with an attached 
shook wave. In the region of cotical flow with variable parauwtera there is 
one straight streamline (v - 0), the dire&Ion of whloh 1s asyn@.otlo for 
all the other streamlines. 
la well known; 

Suah a peaullarity of behavior In oonlaal flows 
as already noticed above, In three-dlmmelonal oonloal flowa 

the resence of the correepondlng singular points was eatabllahed by A.Ferrl. 
Fig. ! b relates to flows with aetaahed shook for which the curve of v(e) 
has a'eegment with negative values of v (Flg.&). In this case there occurs 
onemorestdghtetregnllne. FVomtMsaeooti streamline the flow diverges out- 
aide aarosa the edge of the wlrig, and lnelde asymptotlaally approaching the 
dlreotlon of the firet straight streamline. On further deareaae of the angle 
eO both straight atreamllnee merge and dieappear all the atreaaillnes then 
gF=;; ty edge of the wing, as ahown In Flg.b 0 . Further decrease of 

falling to change the qualitative pattern of the flow, leads 
to co tract& of the region with etreamllnea directed outwarda. ti%nally, 
when '8,<'- p the whole surfaoe of the wlng Is occupaled by a translational 
stream of gas. 

Fig. 8 a, b, c 

For the second example let us consider symmertlcal flow past an angle, 
i.e. let us take erg - e and let us assume, moreover, that t&f 1/2~.. 
Obviously It Is sufflclen? to oonslder the solution only fo7 09 0 G eo. 

On the line of synm!etry 0 - 0 the conditions v - 0 , &dfJ I 0 , 
dS/dtl = 0 muat be 8atlaflea. The vanlshlng of the derivative &/de fol- 
lows from these condltlons and the alternative form of the expression for 
du/dO 

dU 
-- 
de - 

The system of equations (3.1) gives the following connection between the 
values of the required functions when 8 li 0 
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(3.5) 

the 
Accordingly, the lnltlal values of all 
functions can be expreaaed, for example, 

ln term8 of u, - the velocity of the gas 
at the axle of eytmoetry. In terms of u 
we can alao express the value of the derlva- 
tlve au/d9 on the 8x1a of ametry 

=-22uo- 
PO0 w - V,J~,) 

PolSo 

m arranging the choice of the value of 
COndltlOn at the edge of the wing where 9 I 

u we can satisfy the boundary 
$0 l 

Let UI oonaiaer the types of flow which arise for varloue values of 
a and Be. 

M, 
For the make of slntpllclty we sha.ll carry out the analysfs 

for the ea8e pm I 0 , l.c. 
used in the analysis for 

In this Case the expreaelon to be 

form as a fumtion of u, , wnely 
- 0 can be written In explicit 

1 dv -- = 
vWde 0 

Here 
the caoe "$,I_"icT ihlch will be needed later. 

Let US find now the value8 of u" which correspond to 

To the relatlOn6 (3.5) it 1s neceeeary In this case to add also the con- 
dition Of OOIUJervatiOn of mass at the ahock, which for 9, I &T has the form 

Making use of thle relation, when M I - we find without difficulty the 
equation determlnlng the values of ~0 for the case 90' an 

(3.7) 

The expression so fo;md can actually be obtained also from Formula (3.6), 
following from the equation 
of conservation of mass. 
For thla we have to make 
use of the relation au/de = 
g-u, valid for the trane- 
latlonal flow with eo- )n. 

In Flg.9 the curve 1 

Fig. 10 ab b,c 

correspond8 to the vanlsh- 
ing of the numerator In 
Expression (3.6) for dv/d9 
when e = 0 . Cm the atra&ht 
line cosa-uO=0 the 
denominator of this expree- 
alon vanlshee, and curve 2 

@vea the value of ~0 when R,- +TI , as a function of COB a , i.e. of the 
angle of attack. 

Depending upon COB o there may arise three essentially distinct cases. 

a) The case ama> i-'QY . In this Gaae when e"= trr 
streamline flow la poeavle past the wing with an attached shook. The 
dependence of vi on U, la depicted in Fig.10 a ; the points ugt and uop 
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denote the two possible values of the velocity u, when 8 - #r . The 
dependence 0 

B 
= - uO1 sin@, correaondlng to the larger of these two VdZueS 

of the veloc ty, is depicted by the lower curve in Ffg.lla. A8 u, incm 
r from the value u,,~ the derlva- 

tlve de Increases. The lnte- 
gral curves u(e) are shown In 
Flg.lla . !Fhls behavior Is simi- 
lar to that which was ooneldered 
In the first example. In Pig= 
12a, b, c are shown the replace- 

8 ment of the behaviors of flow as 

b C 

Fig. 11 a, b, c and then decreases, reaching thl 
value &T again when 

which corresponds to the second possible behavior of flow past the w %&%a 
I &r (with a stronger shock). Further decrease of u0 leads again to a 

Z&ease in e0 . 
The analysis of the flow with uop< u0 <ug, requires the introduction of 

shocks inside the region of gas flow. Having regard to the limited Interest 
of this case and the case I+< JL,,,, we shall not consider them In more detail. 

bf The c a s e l/z~-l v/(3r + 1) (1 - 1)< CoSCZ < Y-' V-7' - 1. 
In this case the dependence of u,,' on % has qualitatively just the same 
form as before (Flg.lOb ) but the flow past the wing with attached shock Is 
Impossible. 
from 

As ~0 decreases from V,cosa the derivative vO* decreases 
-to 0, becomes negative, reaohes a minimum, and then inctreases 

again. The CUrves V(e) are shown In Flg.llb. For each ee we obtain two 
solutions and moreover there Is a greatest value of so for which conical 
flow Is still possible. The possible behaviors of flow correspond to those 
shown in Fig.12 b and c. 

c) The c a s e COSCZ< Yzrl V/13-r + $1 (r - 1). The dependence of 
vg'on u, is depleted In Flg.10 c, and the curves v(e) in Fig.11 c. In this 

case only one behavior of flow Is 

that as cosa decreases the values 

Pig. 12 a, b, c 

past a triangular wing. 
different forms of sysssetrical flow 

In the regions lto 4 conical behaviors of flow are 
possible. Moreover to each Pair pf values of the angle of attack 0 and 
the Semiangle at the vertex of the w&g @,, there correspond two solutions, 
Just as for flow past a plane wing of infinite span (0,. &) In the 
regions 5 to 7 conical flow does not exist (an exception IS tie Intersection 
of regions 6 and 4). In region 1 and In the parts of regions 2 and 3 to the 
left of the broken line the trailing edge of the wing does not have any 
influence upstream (in the solution with the weaker ahock), and conseqwntly 
SOlUtlOnS obtained for the infinite wing are valid also for the fMte wing. 
In the remaining region of variation of the parameters It is necessary to 
consider the finite wings. 

For example, at the bottom of Fig.13 we Show the varaltlon In the pattern 
of flow gast a wing with eo- loo 
oto100 . 

with variation of the angle of attack from 

the 
In region 1 the shock is attached to the leading edges of the wdmg. Behind 
shock there is a region of translational flow, transformzng in a conti- 

nous manner (acrosS the acoustic characteristics) into a flow,#es~amXnea 
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of which asYmPtotlcallY assume the direction of the center line of the wing. 
In the transition from region 1 to region 2 the shock becomes detached along 
the edge, but retains a common vertex with the wing. The velocity component 
normal to the edge of the wing is equal to the velocity of sound. The lines 
at which the VelOCltJI component vanishes and from which the stream diverges 
to the edges of the wing and to its center line, 
angle of attack Increases, 

grow closer together as the 
and In the transition to region 3 (Flg.13) they 

6Q 

merge with the center lin& (for- 
wing semi 
certain err ytsy K~t~r~~ adoes 
not occur until the conical chara2- 
ter of the flow breaks dom). In 
the transition to region 4 the flow 
of the center line of the wing 
changes direction: the gas begins 
to flow towards the vertex of the 
wing. For the finite wing this 
denotes the occurrence of a critl- 
cal Point on Its surface. As tte 
angle of attack increases, the 
conical flow becomes impossible on 
entry into region 5 and it is 
necessary to consider the finite 
dimenelons of the wing. As the 
angle of attack increases further 
the critical point moves towards 
the trailing edge of the wing and 
leaves it. On entry Into region 
6 the shock becomes attached along 
the trailing edge, and near it 
there arises a region of transla- 
tional flow which gradually grows 
and on entry region 7 it occupies 
the whole surface of the wing. 

With certain modifications the description of the transformations of the 
flow patterns applies also to wings with other vertex angles. 

Let us notice a detail of fundamental Interest. It was remarked above 
that for one and the s&se lnfinlte wing, either conical flow does not exist, 
or else there exist two different conical flows. As Is well known, In flow 
past a wedge (9 - &T), out of the two possible flows the one aatually real- 
ized is that w&h aorresponds to the weaker shock. The same Is true also 
for a triangular wllrg with the shock attached along the edge as In region 1. 
But with gradual increase of the angle of attack and continuous transition 
from region 1 to region 4 It turns out that the stronger shock corresponds 
to the solution. The aolutlon with the weaker shock now turns out to be one 
which is not realieed. This, evidently, is the first example of two-valued 
steady flow with shock waves, in which we have to accord preference to the 
solution with the stronger shock. 

In conolualon we notice that a brief derivation of the fundamental system 
of equations and an analysis of certain of their properties was given by the 
author earlier In [6 and 73 . 

In [8] contains examples of the calculation of flow Past a triangular 
wing In the behavior corresponding to Fig.12 b, by using the first aPPrOfi- 
mation of the method of integral relations. 
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